Why is the basic parabola $y=x^{2}$ is symmetrical about the y-axis? Spend a moment to study its graphical output below:

Symmetry exists NOT because the graph looks as such, but because we know that $(-1)^{2}=(1)^{2}=1$ for $x= \pm 1, \quad(-2)^{2}=(2)^{2}=4$ for $x= \pm 2, \quad(-3)^{2}=(3)^{2}=9$ for $x= \pm 3$. And we can clearly see that things don't just end there, because to prove it is also true for all $x \in \mathfrak{R}$, a non-exhaustive list of attempts must be undertaken.

Which is why we seek to apply a general treatment of the above observation, and it can be stated as follows:

For $y=f(x)$, its graph is symmetrical about the y-axis for all $x \in(-a, a)$ where a is a positive real value IF AND ONLY IF $f(x)=f(-x)$.

Applying this assertion to $y=x^{2}$, we have $(x)^{2}=(-x)^{2}$; so yes we can conclude the parabola is indeed a reflection of itself in the vertical axis.

