

The formula of a tetrahedron with vertices A, B, C and D is given by $\frac{1}{6}|(\overrightarrow{A B} \times \overrightarrow{A C}) \bullet \overrightarrow{A D}|$.
Here is the full derivation:
Let vector normal to plane $A B C$ be n, then $n=\overrightarrow{A B} \times \overrightarrow{A C}$
Area of triangular base $A B C=\frac{1}{2}|\overrightarrow{A B \times A C}|=\frac{1}{2}|n|$
Vertical height of vertex D above plane $A B C=l=|\overrightarrow{A D} \bullet \hat{n}|=\frac{1}{|n|}|\overrightarrow{A D} \bullet n|$
Volume of tetrahedron $=\frac{1}{3}($ base area $)($ vertical height $l)$

$$
\begin{aligned}
& =\frac{1}{3}\left[\frac{1}{2}|n|\right]\left[\frac{1}{|n|}|\overrightarrow{A D} \bullet n|\right] \\
& =\frac{1}{6}|\overrightarrow{A D} \bullet n|=\frac{1}{6}|(\overrightarrow{A B} \times \overrightarrow{A C}) \bullet \overrightarrow{A D}| \quad \text { (shown) }
\end{aligned}
$$

