

How can we prove that a triangle inscribed within a semi-circle is always a right angled one using a vectors method? Here goes:

Firstly, by assigning the centre of the semi-circle to be the origin, we define the general vectors $\overrightarrow{OA} = a$, $\overrightarrow{OB} = b$; in addition, recognise that |a| = |b| since both lengths **represent radii of the**

same semi-circle.

Based on the above diagram, we have $\overrightarrow{AB} = b - a$, $\overrightarrow{AC} = -a - b$ Then $\overrightarrow{AB} \bullet \overrightarrow{AC} = (b - a) \bullet (-a - b) = -a \bullet b - b \bullet b + a \bullet a + a \bullet b$ $= -b \bullet b + a \bullet a$ $= -|b|^2 + |a|^2 = 0$ ($\because |a| = |b|$)

This therefore implies angle $AOB = \frac{\pi}{2}$ (shown)