How can we determine if two lines are exactly the same by inspecting their vector equations?
Here goes:
For two lines with equations $r=a+\lambda m$ and $r=b+\mu d$ where λ, μ are real valued parameters, and a, b represent position vectors of points lying on the lines, then

If $m / / d$ and b lies on $r=a+\lambda m$ for some value of λ, then the two lines are equivalent.
(Alternatively, we can prove that a lies on $r=b+\mu d$ for some value of μ.)

Let's look at an example to facilitate understanding of the above requirements.
For $r=\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)+\lambda\left(\begin{array}{c}3 \\ -1 \\ 4\end{array}\right)$ and $r=\left(\begin{array}{c}7 \\ -2 \\ 10\end{array}\right)+\mu\left(\begin{array}{c}-3 \\ 1 \\ -4\end{array}\right)$,
Since $\left(\begin{array}{c}3 \\ -1 \\ 4\end{array}\right) / /\left(\begin{array}{c}-3 \\ 1 \\ -4\end{array}\right)$ and $\left(\begin{array}{c}7 \\ -2 \\ 10\end{array}\right)$ does lie on $r=\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)+\lambda\left(\begin{array}{c}3 \\ -1 \\ 4\end{array}\right)$ for $\lambda=2$, hence both lines are
equivalent to each other. (shown)

