
Say for instance a random variable X is normally distributed with a known mean 0µµ =  and an 

unknown variance 
2σ , and it is further given that ( ) ( )aXPaXkP +<=−< 00 µµ , where both k  

and a are known, real positive constants, how would we go about solving for the value of σ  

efficiently? 

The trick is to recognise some form of symmetry exists within the above problem. 

Drawing the normal distribution curve in reference to the definition of  rv :X  
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By observation, appreciate that the area (under the curve) to the left of a−0µ  is exactly equivalent 

to the area (under the curve) to the right of a+0µ , ie  

( ) ( ) )1(00 −−−−−−−−<=+> aXPaXP µµ  

Also, ( ) ( )aXPaXP +>−=+< 00 1 µµ  

Substituting in (1),   ( ) ( )aXPaXP −<−=+< 00 1 µµ  

Thus ( ) ( )aXPaXkP +<=−< 00 µµ  becomes 

         ( ) ( )aXPaXkP −<−=−< 00 1 µµ  
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        Standardization to the standard normal Z  distribution gives        
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