Say for instance a random variable X is normally distributed with a known mean $\mu=\mu_{0}$ and an unknown variance σ^{2}, and it is further given that $k P\left(X<\mu_{0}-a\right)=P\left(X<\mu_{0}+a\right)$, where both k and a are known, real positive constants, how would we go about solving for the value of σ efficiently?

The trick is to recognise some form of symmetry exists within the above problem.
Drawing the normal distribution curve in reference to the definition of rv X :

By observation, appreciate that the area (under the curve) to the left of $\mu_{0}-a$ is exactly equivalent to the area (under the curve) to the right of $\mu_{0}+a$, ie
$P\left(X>\mu_{0}+a\right)=P\left(X<\mu_{0}-a\right)-------(1)$
Also, $P\left(X<\mu_{0}+a\right)=1-P\left(X>\mu_{0}+a\right)$

Substituting in (1), $\quad P\left(X<\mu_{0}+a\right)=1-P\left(X<\mu_{0}-a\right)$

Thus $k P\left(X<\mu_{0}-a\right)=P\left(X<\mu_{0}+a\right)$ becomes

$$
\begin{aligned}
& k P\left(X<\mu_{0}-a\right)=1-P\left(X<\mu_{0}-a\right) \\
& (k+1) \bullet P\left(X<\mu_{0}-a\right)=1 \\
& P\left(X<\mu_{0}-a\right)=\frac{1}{k+1}
\end{aligned}
$$

Standardization to the standard normal Z distribution gives

$$
\begin{aligned}
& P\left[Z<\frac{\left(\mu_{0}-a\right)-\mu_{0}}{\sigma}\right]=\frac{1}{k+1} \quad[\because Z \sim N \\
& P\left(Z<-\frac{a}{\sigma}\right)=\frac{1}{k+1} \\
& -\frac{a}{\sigma}=\operatorname{invNorm}\left(\frac{1}{k+1}\right) \Rightarrow \sigma=-\frac{a}{\operatorname{invNorm}\left(\frac{1}{k+1}\right)} \quad \text { (shown) }
\end{aligned}
$$

