When solving for roots of higher degree polynomials in complex numbers, it is essential to convert $e^{i \theta}$ into its equivalent form $e^{i(2 k \pi+\theta)}$ so that all roots can be discovered as the value of the integer k changes.

So how is $e^{i(2 k \pi+\theta)}=e^{i \theta}$?
I will provide the mathematical proof below, which is actually rather simple:
$e^{i(2 k \pi+\theta)}=\cos (2 k \pi+\theta)+i \sin (2 k \pi+\theta)$

$$
=\cos (2 k \pi) \cos \theta-\sin (2 k \pi) \sin \theta+i[\sin (2 k \pi) \cos \theta+\cos (2 k \pi) \sin \theta]-------(1)
$$

For all $k \in Z, \quad \cos (2 k \pi)=1$ and $\sin (2 k \pi)=0$;
Hence (1) reduces to $\cos \theta+i \sin \theta=e^{i \theta}$ (shown)
(Note: the trigonometric expansions $\cos (A+B)=\cos A \cos B-\sin A \sin B$ and $\sin (A+B)=\sin A \cos B+\cos A \sin B$ were employed in the above workings.)

