When solving for roots of higher degree polynomials in complex numbers, it is essential to convert $e^{i\theta}$ into its equivalent form $e^{i(2k\pi+\theta)}$ so that all roots can be discovered as the value of the **integer** k changes.

So how is $e^{i(2k\pi+\theta)} = e^{i\theta}$?

I will provide the mathematical proof below, which is actually rather simple:

$$e^{i(2k\pi+\theta)} = \cos(2k\pi+\theta) + i\sin(2k\pi+\theta)$$
$$= \cos(2k\pi)\cos\theta - \sin(2k\pi)\sin\theta + i\left[\sin(2k\pi)\cos\theta + \cos(2k\pi)\sin\theta\right] - - - - - - (1)$$

For all $k \in \mathbb{Z}$, $\cos(2k\pi) = 1$ and $\sin(2k\pi) = 0$;

Hence (1) reduces to $\cos \theta + i \sin \theta = e^{i\theta}$ (shown)

(Note: the trigonometric expansions $\cos(A + B) = \cos A \cos B - \sin A \sin B$ and

sin(A + B) = sin A cos B + cos A sin B were employed in the above workings.)