For the DE of the form $\frac{d y}{d x}+f(x) \bullet y=g(x)$,

We will multiply both sides by an integrating factor given by $e^{\int f(x) d x}$, such that the above becomes $e^{\int f(x) d x} \bullet \frac{d y}{d x}+\left[f(x) e^{\int f(x) d x}\right] \bullet y=e^{\int f(x) d x} g(x)=h(x)$, where $\quad h(x)=e^{\int f(x) d x} g(x)$

This is equivalent through reduction (by the product rule for the LHS) to

$$
\frac{d}{d x}\left[y e^{\int f(x) d x}\right]=h(x)
$$

Integrating both sides wrt x gives $y e^{\int f(x) d x}=\int h(x) d x+C$
Therefore, the general solution is $y=\left[e^{-\int f(x) d x}\right] \bullet\left[\int h(x) d x+C\right]$ (shown)

