Given two points *A* and *B* in vector space, how does one discern a point on the line *AB* such that it bisects the angle *AOB*?

The premise is quite straight forward. In essence, it shall be demanded that this point C exists such that angle AOC equals angle BOC.

As such,
$$\cos \theta = \frac{a \bullet c}{|a||c|} = \frac{b \bullet c}{|b||c|} \Rightarrow \frac{a \bullet c}{|a|} = \frac{b \bullet c}{|b|} = -----(1)$$

Now, the equation of the line AB can be subsequently fashioned as $r = a + \lambda(b - a)$, where $\lambda \in \Re$

Thereafter, for a particular point C on the said line, this can also be interpreted as $c = a + \lambda (b - a)$ for a given value of λ presently unknown.

Substituting this into (1), we have $\frac{a \bullet [a + \lambda(b - a)]}{|a|} = \frac{b \bullet [a + \lambda(b - a)]}{|b|}$

Bearing in mind that the coordinates of both points A and B are already provided at the onset, one strives to solve for λ , which shall be re-inserted into $c = a + \lambda(b - a)$ to actually discover the point C itself.

Note: students may be tempted to perform a further reduction of (1) by simply construing $a \bullet b = b \bullet c$ as a = b by eliminating *c* on both sides-this is absolutely incorrect. Consider a simple

example, where
$$\begin{pmatrix} 2\\0\\1 \end{pmatrix} \bullet \begin{pmatrix} 3\\1\\0 \end{pmatrix} = \begin{pmatrix} 3\\1\\0 \end{pmatrix} \bullet \begin{pmatrix} 1\\3\\0 \end{pmatrix} = 6$$
; clearly $\begin{pmatrix} 2\\0\\1 \end{pmatrix} \neq \begin{pmatrix} 1\\3\\0 \end{pmatrix}$