Given two points $A$ and $B$ in vector space, how does one discern a point on the line $A B$ such that it bisects the angle $A O B$ ?


The premise is quite straight forward. In essence, it shall be demanded that this point $C$ exists such that angle $A O C$ equals angle $B O C$.

As such, $\cos \theta=\frac{a \bullet c}{|a||c|}=\frac{b \bullet c}{|b||c|} \Rightarrow \frac{a \bullet c}{|a|}=\frac{b \bullet c}{|b|}------(1)$
Now, the equation of the line $A B$ can be subsequently fashioned as $r=a+\lambda(b-a)$, where $\lambda \in \mathfrak{R}$ Thereafter, for a particular point $C$ on the said line, this can also be interpreted as $c=a+\lambda(b-a)$ for a given value of $\lambda$ presently unknown.

Substituting this into (1), we have $\frac{a \bullet[a+\lambda(b-a)]}{|a|}=\frac{b \bullet[a+\lambda(b-a)]}{|b|}$
Bearing in mind that the coordinates of both points $A$ and $B$ are already provided at the onset, one strives to solve for $\lambda$, which shall be re-inserted into $c=a+\lambda(b-a)$ to actually discover the point $C$ itself.

Note: students may be tempted to perform a further reduction of (1) by simply construing $a \bullet b=b \bullet c$ as $a=b$ by eliminating $c$ on both sides-this is absolutely incorrect. Consider a simple
example, where $\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right) \bullet\left(\begin{array}{l}3 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{l}3 \\ 1 \\ 0\end{array}\right) \bullet\left(\begin{array}{l}1 \\ 3 \\ 0\end{array}\right)=6$; clearly $\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right) \neq\left(\begin{array}{l}1 \\ 3 \\ 0\end{array}\right)$

