The inverse rule for composite functions work as follows: $(f g)^{-1}=g^{-1} f^{-1}$

When is this actually useful?
To find $(f g)^{-1}$, at times after obtaining the expression for $f g$ it might be rather difficult (or seemingly impossible) to obtain its inverse. However, you can simply find the expressions for f^{-1} and g^{-1} separately, then subsequently embed g^{-1} within f^{-1} to give $g^{-1} f^{-1}$. This is exactly equivalent to $(f g)^{-1}$.

While such an application is less common in examination questions, nonetheless it would be good to have this knowledge. I have worked out the proof for the interested student below:

Let $h=(f g)^{-1}$

Then $h^{-1}=f g$

$$
\begin{array}{ll}
& f^{-1} h^{-1}=f^{-1}(f g)=g \quad \\
& g^{-1} f^{-1} h^{-1}=g^{-1} g=x \quad \text { (append } f^{-1} \text { to the front of both sides of the equation) } \\
\therefore \quad & \left(g^{-1} f^{-1} h^{-1}\right) h=h(x) \Rightarrow h(x)=g^{-1} f^{-1} \text { (shown) }
\end{array}
$$

(append h to the back of both sides of the equation)

