How does one compute the interquartile range, ie the difference between the $25^{\text {th }}$ percentile and $75^{\text {th }}$ percentile for a given normal distribution with known mean and variance? Well, it is actually very straightforward and the process is detailed as follows:

Let the $25^{\text {th }}$ and $75^{\text {th }}$ percentiles be a and b respectively.
Then $P(X<a)=0.25 \Rightarrow a=\operatorname{invNorm}(0.25, \mu, \sigma)$ * and $P(X<b)=0.75 \Rightarrow b=\operatorname{invNorm}(0.75, \mu, \sigma) *$

As such, $I Q R=Q 3-Q 1=b-a$
*These cited are mere graphic calculator commands; alternatively you may consult a standard normal distribution table to arrive at a and b.

For normal curves specifically centered about the vertical axis, owing to symmetry, the interquartile range is simply twice that of the $75^{\text {th }}$ percentile,
ie

$$
I Q R=Q 3-Q 1=2 Q_{3}
$$

Adding on, did you also know that the interquartile range for a normal distribution is approximately 1.35 times its standard deviation? Let's see how this is true.

Once again, we establish that $P(X<a)=0.25$ and $P(X<b)=0.75$

Standardizing X to the random variable Z for both equations,

$$
\begin{array}{ll}
P\left(Z<\frac{a-\mu}{\sigma}\right)=0.25 & P\left(Z<\frac{b-\mu}{\sigma}\right)=0.75 \\
\frac{a-\mu}{\sigma}=\operatorname{invNorm}(0.25)=-0.675 & \frac{b-\mu}{\sigma}=\operatorname{invNorm}(0.75)=0.675 \\
a=-0.675 \sigma+\mu-----(1) & b=0.675 \sigma+\mu-----(2)
\end{array}
$$

Subtracting (1) from (2) therefore yields $b-a=I Q R=1.35 \sigma$ (shown)

